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Due to the convenience of the statistical interpretation and parameter estimation, a normal 
distribution is typically assumed for multivariate longitudinal data analysis. However, this 
assumption may be questionable in practice, because it is possible that outliers exist or 
that the underlying data will show heavy tails. In addition, since the covariance matrix 
should explain complex correlation structures, it must be positive-definite, and as it 
is also high-dimensional, the modeling of the covariance matrix is not easy. To solve 
these problems, we propose the robust modeling of multivariate longitudinal data by 
considering multivariate t distribution, and we exploit modified Cholesky and hypersphere 
decompositions to model the covariance matrix. The estimation of the models is shown to 
be robust when the data include outliers and exhibit heavy tails. The performance of our 
proposed model and algorithm is illustrated using a nonalcoholic fatty liver disease data 
set and several simulation studies.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate longitudinal data are collected in various fields, including epidemiology, biomedicine, and public health sci-
ence. The main issue in such studies is modeling a proper covariance matrix, as multiple responses are repeatedly measured 
from each subject over time. However, unlike univariate longitudinal data, it is not easy to model the covariance matrix for 
multivariate longitudinal data because the covariance matrix should consider three complex correlations: the correlation 
within separate responses over time, the cross-correlation between different responses at different times, and the correla-
tion between different responses at each time point. To analyze these data while considering all relevant factors, multivariate 
linear models have been developed with multivariate normal errors (Kim and Zimmerman, 2012). Since then multivariate 
linear models assuming a multivariate normal distribution have continued to be used in multivariate data analysis (Xu and 
Mackenzie, 2012, Feng et al., 2016, Kohli et al., 2016, Lee et al., 2020, Lee et al., 2021), because the multivariate normality 
assumption leads to easier parameter estimation. However, the normality assumption may be questionable in practice - such 
as when the data include outliers or exhibit heavy tails - and there may be bias in parameter estimation. In this situation, 
robust estimation for multivariate linear models using the multivariate t distribution can be useful.
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Statistical literature has proposed a variety of linear models using a t error distribution. For example, He et al. (2004)
proposed a robust estimator of linear regression, while Pinheiro et al. (2001) proposed linear mixed effects models using 
multivariate t distributions, and these models were shown to be efficient for the multivariate t distribution relative to the 
normal distribution. Lin and Wang (2009) proposed a robust approach involving the joint modeling of mean and scale 
covariance for univariate longitudinal data. Their approach exploits Pourahmadi (1999)’s modified Cholesky decomposition 
(MCD) and the multivariate t distribution. Lin and Wang (2011) presented a fully Bayesian approach for Lin and Wang 
(2009)’s model. In this paper, we extend Lin and Wang (2009)’s models to accommodate multivariate longitudinal data and 
develop robust estimation in the case of outliers or heavy-tailed errors.

Multivariate t error distributions are used for multivariate linear mixed models to analyze multivariate longitudinal 
data. For example, Wang and Fan (2010) and Wang and Fan (2011) proposed multivariate linear mixed models with an 
autoregressive t error distribution. In another study, Wang et al. (2018) extended the models outlined in Wang and Fan 
(2010) and Wang and Fan (2011) to accommodate censored heavy-tailed multivariate longitudinal data. Sequential papers 
extending these models to nonlinear mixed models have also been proposed (Wang and Lin, 2014, Lin and Wang, 2020). In 
the above papers, the scale matrix in the multivariate t distribution has a Kronecker product (KP) structure. The KP structure 
makes the implicit assumption that, for response variables, the longitudinal correlation structure is the same, and that the 
covariance between response variables at the same time does not depend on time and instead remains constant over all 
time points. However, this is often too strong an assumption. In this paper, we consider the MCD to allow for a more flexible 
structure.

For univariate longitudinal data analysis, the MCD decomposes the inverse covariance matrix into unconstrained param-
eters (generalized autoregressive parameters (GARPs) and log innovation variances (IVs)), and the covariance matrix from 
the MCD is guaranteed to be positive-definite (Pourahmadi, 1999). However, the MCD cannot directly be exploited to model 
the covariance matrix for multivariate longitudinal data analysis because there are complex correlated structures to consider 
(the correlation within separate responses over time, the cross-correlation between different responses at different times, 
and the correlation between responses at each time point). In particular, the MCD cannot be used to explain the correlation 
between responses at each time point. Therefore, statistical models have been developed to explain these correlations in 
multivariate longitudinal data analysis.

Various studies have attempted to explain these complex correlations. All of the models described below use the MCD to 
decompose a covariance matrix into a generalized autoregressive matrix (GARM) and an innovation covariance matrix (ICM). 
The GARM explains the serial correlations (the correlation within separate responses over time and the cross-correlation 
between different responses at different times), while the ICM explains the correlations between responses at each time 
point. Further, the estimated covariance matrix using the MCD is positive-definite. Various models have been proposed to 
describe the correlations between responses at each time point. For example, Kim and Zimmerman (2012) exploited another 
MCD to model the ICM, but they imposed ordering of the responses, which is unnatural in most practical situations. Xu 
and Mackenzie (2012) used matrix logarithmic covariance modeling (Chiu et al., 1996) to model the ICM. However, the 
parameters from the matrix logarithmic covariance modeling are difficult to estimate and interpret. Kohli et al. (2016)
used the enhanced Anderson (1973)’s linear covariance models to model the ICM, and the estimation of the ICM requires 
a complicated algorithm. Recently, Lee et al. (2020) decomposed the ICM into innovation standard deviations (ISDs) and 
correlation matrices, and they modeled the correlation matrices using hypersphere decomposition (HD). In this paper, we 
extend Lee et al. (2020)’s models to accommodate multivariate longitudinal data with outliers or heavy-tailed errors.

The rest of this paper is organized as follows. Section 2 begins with brief literature reviews related to the proposed 
model, while Section 3 proposes robust multivariate linear models with covariance matrix for multivariate longitudinal 
data using the MCD and HD. Section 4 presents the maximum likelihood estimations from our proposed models. Section 5
provides the simulation results to illustrate the performance of the proposed models, and Section 6 presents the analysis of 
the motivating data using our proposed models. Finally, Section 7 concludes this paper.

2. Literature review

In this section, we elaborate upon modelings of the covariance matrix in linear models for univariate longitudinal data. 
As longitudinal data is obtained by repeatedly measuring from the same subjects, there are inevitable correlations that must 
be considered in properly analyzing the data. However, there are still some difficulties in modeling the covariance matrix 
for longitudinal data: the constraints of positive-definiteness and the high dimensionality of the covariance matrix, �. To 
solve these problems, several methods have been proposed. In this section, we review two recently developed methods for 
modeling the covariance matrix: MCD and HD. Both decompositions are exploited for linear models with a normal error 
distribution.

2.1. Modified Cholesky decomposition

Pourahmadi (1999) proposed the MCD to model the covariance matrix in linear models for univariate longitudinal data. 
Through this process, the covariance matrix is decomposed into unconstrained parameters.

Let yi = (yi1, . . . , yit , . . . , yini )
T be the response vector for subject i (i = 1, 2, . . . , N) measured at time t (t = 1, 2, . . . , ni)

and xit be a p × 1 vector of covariates corresponding to the response yit . We then have
2
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yi1 = xT
i1β + ei1,

yit = xT
itβ +

t−1∑
j=1

φit j(yij − xT
i jβ) + eit, (1)

ei = (ei1, ei2, . . . , eini )
T ∼ N(0, Di),

where β is a p × 1 vector of unknown mean parameters, φit j is a generalized autoregressive parameter (GARP), and Di =
diag(σ 2

i1, . . . , σ
2
it , . . . , σ

2
ini

). Note that the σ 2
it ’s are called innovation variances (IVs).

After rearranging both sides of (1), we obtain

yit − xT
itβ −

t−1∑
j=1

φit j(yij − xT
i jβ) = eit . (2)

Then, we have the following matrix form from (2):

Ti(Yi − X T
i β) = ei, (3)

where

Ti =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
−φi21 1 0 · · · 0

...
... 1 · · · 0

...
...

...
. . .

...

−φin1 −φin2 · · · −φin,n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Xi =

⎛
⎜⎜⎜⎝

xT
i1

xT
i2
...

xT
ini

⎞
⎟⎟⎟⎠ .

Since there may be differences in the number of times each subject has been measured, the number of repeated mea-
surements is written as ni .

Taking covariances on both sides of (3), we obtain:

Ti�T T
i = Di,

�i = T −1
i Di T

−T
i ⇐⇒ �−1

i = T T
i D−1

i T i . (4)

To reduce the dimensionality and satisfy the positive-definiteness constraint of covariance matrix �, the GARPs and IVs can 
be modeled as:

φit j = ωT
it jα, log(σ 2

it ) = hT
itλ,

where α and λ are a × 1 vector and b × 1 vector of unknown parameters, respectively. Further, ωit j and hit are a ×
1 and b × 1 design vectors, respectively, and they are time and/or subject specific covariates to model GARPs and IVs, 
respectively. Through the reparameterization of the covariance matrix �, the number of parameters is reduced to a + b. 
Further, all positive IVs guarantee the positive-definiteness of the estimated covariance matrix �. This also allows for easier 
interpretations and simpler computation.

2.2. Hypersphere decomposition

Zhang et al. (2015) proposed a joint mean-variance-correlation modeling approach for longitudinal data using hy-
persphere decomposition (HD). In this approach, the covariance matrix is first decomposed as �i = Si Ri Si where Si =
diag

{
σi1, . . . , σini

}
and Ri is the correlation matrix. HD is exploited to account for the correlation between repeated re-

sponses over time in longitudinal studies.
To make �i be positive-definite, Ri should also be positive-definite. However, modeling Ri is not easy for three reasons: 

1) the diagonal elements should be 1’s; 2) the off-diagonal elements of Ri should be in the range [−1, 1]; and 3) Ri must 
be positive-definite. HD can be used to solve each of these difficulties.

Using HD, Ri is reparameterized as Ri = Fi F T
i where Fi is a lower triangular matrix with the (1,1)th element being one 

and the other elements determined as

f ilm =
⎧⎨
⎩

cos(ωilm), for m = 1, l = 2, . . . , K ;
cos(ωilm)

∏m−1
r=1 sin(ωilr), for 2 ≤ m < l ≤ K ;∏m−1

r=1 sin(ωilr), for l = m; m = 2, . . . , K ,

with ωilm ∈ (0, π). Note that f ilm are trigonometric functions of ωilr called hypersphere parameters (HPs). Using HD ensures 
the positive-definiteness of Ri and enables the identification of the correlation between responses over time. However, no 
studies have used HD to model the covariance matrix for multivariate t longitudinal data. Therefore, we aim to address this 
gap.
3
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3. Robust modeling of multivariate longitudinal data

For the analysis of multivariate longitudinal data, we commonly use multivariate linear models that assume a multivari-
ate normal distribution. In these models, three correlations are considered to estimate covariate effects on the responses: 
the correlation within separate responses over time, the cross-correlation between different responses at different times, 
and the correlations between different responses at different times (Kim and Zimmerman, 2012, Kohli et al., 2016, Lee et 
al., 2020). However, when the data include outliers or exhibit heavy tails, the multivariate normality assumption may be 
questionable. In this section, we overcome this limitation by proposing multivariate t linear models (MTLM).

3.1. The proposed models

Let yi = (yT
i1, . . . , y

T
it , . . . , y

T
ini

)T be the response vector for the ith subject where yT
it = (yit1, . . . , yit K ) is K continuous 

responses at time period t (i = 1, . . . , N; t = 1, . . . , ni). Also let xit be the covariate vector corresponding to yit . Assume that 
yi , for i = 1, . . . , N , are independent. Then we specify our proposed models as follows, for k = 1, . . . , K ,

yi1k = xT
i1βk + ei1k,

yitk = xT
itβk +

t−1∑
j=1

K∑
g=1

φit j,kg(yijg − xT
i jβg) + eitk, (5)

where βk is a p × 1 unknown mean parameter vector, φit j,kg ’s are generalized autoregressive parameters (GARPs), and eitk ’s 
are prediction errors.

Note that this model exhibits an AR structure and that φit j,kg is the coefficient of the jth previous residual of outcome 
g . In this model, yit is affected by all of the previous responses and the GARPs (φit j,kg ) account for two serial correlations: 
the correlation within each response over time and the cross-correlation between different responses at different times.

We assume that

ei
indep∼ tν(0, Di), (6)

where ei = (eT
i1, . . . , e

T
ini

)T with eit = (eit1, . . . , eit K )T , and tν(0, Di) is the multivariate t-distribution with degrees of freedom 
(d.f.) ν , location vector 0 and scale covariance matrix Di .

The multivariate t-distribution can be represented as the following two-level hierarchical form

ei
indep∼ N(0, u−1

i Di), (7)

ui
iid∼ Gamma(ν/2, ν/2), (8)

where Di = diag
{

Di1, . . . , Dini

}
is called the innovation covariance matrix (ICM) with Dit = var(eit).

We can rewrite (5) in matrix form as follows:

Ti(yi − Xiβ) = ei, (9)

where

Ti =

⎛
⎜⎜⎜⎝

I 0 · · · 0
−�i21 I · · · 0

...
...

. . . 0
−�ini 1 −�ini 2 · · · I

⎞
⎟⎟⎟⎠ , Xi =

⎛
⎜⎜⎜⎝

Xi1
Xi2
...

Xini

⎞
⎟⎟⎟⎠ ,

with

�it j =

⎛
⎜⎜⎜⎝

φit j,11 · · · φit j,1K
φit j,21 · · · φit j,2K

...
. . .

...

φit j,K 1 · · · φit j,K K

⎞
⎟⎟⎟⎠ ,

and Xit = diag
{

xT
it , . . . , xT

it

}
being a K × Kp matrix. Here, �it j is called the GARP matrix (GARPM). Note that Ti and Di

uniquely exist, and that Ti is nonsingular (Lee et al. (2017), Lee et al. (2020)).
Lee et al. (2020) proposed the modeling of ICM in the multivariate linear models (MLMs) using the modified Cholesky 

decomposition and hypersphere decomposition. Recall that the purposes of these two decompositions are to solve the 
following difficulties: 1) the constraint of the positive-definiteness of �; 2) high-dimensionality; and 3) heteroscedasticity 
of �.
4
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The conditional mean of yi in (9) is given by:

E(yi; ui) = Xiβ.

To calculate the conditional covariance of yi , we take the conditional covariances on both sides of (9). We then obtain the 
following result:

Ti var(yi; ui)T T
i = u−1

i Di ⇔ var(yi; ui) = u−1
i T −1

i Di T
−T
i

let= u−1
i �i, (10)

where �i = T −1
i Di T

−T
i . The marginal mean and variance of yi are respectively given by:

E(yi) = Xiβ,

var(yi) = ν

ν − 2
�i .

From Peel and McLachlan (2000), the marginal distribution of yi is a multivariate t-distribution with degrees of freedom 
(d.f.) ν , mean vector Xiβ , scale covariance matrix �i and the probability density function of:

p(yi |β,�i, ν) =
�
(

ν+ni K
2

)
�
(
ν
2

)
(π)

ni K
2

ν− ni K
2 |�i|− 1

2

(
1 + (yi − Xiβ)T �−1

i (yi − Xiβ)

ν

)− ν+ni K
2

. (11)

Note that the heavy tail of the multivariate t-distribution shows the robustness of the parameter estimation for the multi-
variate linear models.

The parameters in the matrix Ti are not identifiable without knowledge of any of the covariance matrix structure. The 
matrix T in (10) has nK (nK − 1)/2 parameters where n = max(ni). However, with a specific structure of the covariance 
matrix such as those based on the MCD structure in (10), the matrix can be identified and the identifiability can easily be 
assessed by checking the invertibility of the Hessian matrix in Section 4.

Note that �i in (10) is positive-definite if and only if all of the diagonal matrices of Di are positive-definite (Lee et al., 
2020). Therefore, we need to model Dit as being positive-definite. Remember that Dit presents the correlation between 
responses at time t for subject i, and that the responses at the same time cannot be ordered. Therefore, the modeling of 
Dit cannot use MCD, unlike Kim and Zimmerman (2012). Instead, we first consider the variance-correlation decomposition 
as follows:

Dit = Sit Ri Sit, (12)

where Sit = diag {σit1, . . . , σit K } and Ri is the K × K correlation matrix for eit . Here σitk ’s are called innovation standard 
deviations (ISDs).

From (12), the positive-definiteness of Dit is equivalent to both the positiveness of all σitk ’s and the positive-definiteness 
of Ri . However, the modeling of the positive-definite Ri is not easy, because the diagonal elements of Ri should be ones. To 
overcome this problem, we use hypersphere decomposition (Lee et al., 2020) through the following decomposition:

Ri = Fi F T
i ,

where

Fi =

⎛
⎜⎜⎜⎝

1 0 0 · · · 0
f i21 f i22 0 · · · 0
...

...
...

. . .
...

f iK 1 f iK 2 f iK 3 · · · f iK K

⎞
⎟⎟⎟⎠ ,

with

f ilm =
⎧⎨
⎩

cos(ωilm), for m = 1, l = 2, · · · , K ;
cos(ωilm)

∏m−1
r=1 sin(ωilr), for 2 ≤ m < l ≤ K ;∏m−1

r=1 sin(ωilr), for l = m; m = 2, · · · , K ,

being trigonometric functions of angles ωilm ∈ (0, π), which are called the hypersphere parameters (HPs) under the trian-
gular angles parametrization (Rapisarda et al., 2007).

Note that for the direct modeling of the correlation matrix, the triangular angles parametrization is used for uncon-
strained correlation parametrization, and this parametrization can be directly interpreted for the correlations.
5
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3.2. Modeling of GARPs, ISDs, and HPs

The parameters of the GARPs, ISDs, and HPs can be modeled using time and/or subject-specific covariate vectors wit j by 
setting:

φit j,kg = w T
it jαkg, (13)

logσitk = hT
itλk, (14)

log

(
ωilm

π − ωilm

)
= gT

ilmδ, (15)

where αkg , λk , and δ are respectively a × 1, b × 1, and c × 1 vectors of unknown parameters, while wit j , hit , and gilm are 
the corresponding time and/or subject-specific covariate vectors (Lee and Chen, 2019).

Note that the number of parameters in the covariance matrix can be reduced by considering models (13)-(15). These 
design vectors include subject-specific covariates for the heteroscedastic covariance matrix. For example, the time lag, 
|T imeit − T imeij| in the design vector wit j specifies higher lag models. T imeit in the design vector hit specifies the lin-
earity in T imeit . gilm is also a subject-specific response-dependent vector. However, we consider a simple structure such as 
gT

ilmν = νl + νm for l, m = 1, . . . , K . We also note that the model (14) makes σitk positive while the model (15) makes Ri
positive-definite through the HD. As a result, the covariance matrix is guaranteed to be positive-definite.

4. Maximum likelihood estimation

In this section, we present the derivation of the maximum likelihood estimation for our proposed models. Let θ =
(βT , αT , λT , νT )T . The loglikelihood function is given by:

log L(θ; y) =
N∑

i=1

[
log�

(
ni K + ν

2

)
− log�

(ν

2

)
− ni K

2
log(πν) −

ni∑
t=1

K∑
k=1

hT
itλk

− ni log |Fi | − ni K + ν

2
log

(
1 + 1 + (yi − Xiβ)T �−1

i (yi − Xiβ)

ν

)]

=
N∑

i=1

[
log�

(
ni K + ν

2

)
− log�

(ν

2

)
− ni K

2
log(πν) −

ni∑
t=1

K∑
k=1

hT
itλk

− ni log |Fi | − ni K + ν

2
log

(
1 + 1 + (ri − Ciα)T D1

i −1(ri − Ciα)

ν

)]
,

where ri = yi − Xiβ ,

Ci =

⎛
⎜⎜⎜⎝

0
Ci2
...

Cini

⎞
⎟⎟⎟⎠ , Cit =

⎛
⎜⎜⎝

∑t−1
j=1

∑K
k=1(yijk − xT

i jβk)W it j(1,k)

...∑t−1
ni=1

∑K
k=1(yijk − xT

i jβk)W it j(K ,k)

⎞
⎟⎟⎠ .

Here, 0 in Ci is a K × 1 zero vector and for l = 1, . . . , K , W it j(l, k) is a 1 × aK 2 vector such that

W it j(l,k)α = w T
it jαlk,

where α = (αT
11, α

T
12, . . . , α

T
K K )T and W it j(l, k) = (0T · · ·0T w T

it j0
T · · ·0T ) with w T

it j being located for αlk .
Maximizing the log-likelihood with respect to θ yields the score functions that are given by:

∂ log L(θ; y)

∂β
=

N∑
i=1

τi X T
i �−1

i (yi − Xiβ), (16)

∂ log L(θ; y)

∂α
=

N∑
i=1

τi C
T
i D−1

i (ri − Ciα), (17)

∂ log L(θ; y)

∂λkg
= −

N∑{ ni∑
hitg + 1

2
τir

T
i T T

i

∂ D−1
i

∂λkg
Tiri

}
, k = 1, . . . , K ; g = 1, . . . ,b, (18)
i=1 t=1

6
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∂ log L(θ; y)

∂δg
= −

N∑
i=1

⎧⎨
⎩ni

K∑
k=2

∂ f ikk
∂δg

f ikk
+ 1

2
τir

T
i T T

i

∂ D−1
i

∂δg
Tiri

⎫⎬
⎭ , g = 1, . . . , c, (19)

∂ log L(θ; y)

∂ν
= 1

2

N∑
i=1

{
γ

(
ν + ni K

2

)
− γ

(ν

2

)
− ni K

ν
− log

(
1 + rT

i �−1
i ri

ν

)
+ 1

ν
τir

T
i �−1

i ri

}
, (20)

where

τi = ni K + ν

ν + rT
i �−1

i ri
,

∂ D−1
i

∂λkg
= diag

{
∂ S−1

i1

∂λkg
R−1

i S−1
i1 + S−1

i1 R−1
i

∂ S−1
i1

∂λkg
, . . . ,

∂ S−1
ini

∂λkg
R−1

i S−1
ini

+ S−1
ini

R−1
i

∂ S−1
ini

∂λkg

}
,

∂ D−1
i

∂δg
= diag

{
−S−1

i1 R−1
i

∂ Ri

∂δg
R−1

i S−1
i1 , . . . ,−S−1

ini
R−1

i

∂ Ri

∂δg
R−1

i S−1
ini

}
,

∂ S−1
it

∂λkg
is a K × K diagonal matrix with − hitg

σitk
for the (k, k)th element and zeros for the other elements, and ∂ Ri

∂δg
= ∂ Fi

∂δg
F T

i +
Fi

∂ F T
i

∂δg
having

∂ f ilm

∂δg
=

⎧⎪⎪⎨
⎪⎪⎩

− f ilm tan(ωilm)
∂ωilm
∂δg

, for m = 1, l = 2, . . . , K ;

f ilm
∑m−1

r=1
1

tan(ωilr)
∂ωilr
∂δg

, for l = m;m = 2, . . . , K ;

f ilm

{
− tan(ωilm)

∂ωilm
∂δg

+∑m−1
r=1

1
tan(ωilr)

∂ωilr
∂δg

}
, for 2 ≤ m < l ≤ K ,

and γ (x) = ∂ log�(x)
∂x .

We now have the necessary ingredients to present the Fisher information in terms of the blocks of a partitioned 5 × 5
matrix corresponding to β , α, λ, δ, and ν . Let ψ = (αT , λT , δT , ν)T and θ0 = (βT

0 , ψ T
0 )T be the true value of θ . Also let 

I(θ0) = diag {I(β0), I(ψ0)}, where

I(β) =
N∑

i=1

ν + ni K

ν + ni K + 2
X T

i �−1
i Xi,

I(ψ) =

⎛
⎜⎜⎝

I(α) I(α,λ) I(α, δ) I(α,ν)

I(α,λ)T I(λ) I(λ, δ) I(λ, ν)

I(α, δ)T I(λ, δ)T I(δ) I(δ, ν)

I(α,ν)T I(λ, ν)T I(δ, ν)T I(ν)

⎞
⎟⎟⎠ ,

and the elements of the information matrix I(ψ) are given in (21)-(30) in the Appendix.
To obtain the elements of the Fisher information matrix, we need the following Proposition:

Proposition. For the multivariate t distribution in (11), we have the following results:

(a) E(τi) =
(

ν+1
ν+2

) ni K
2

, (b) E(τiri) = 0, (c) E(τ 2
i ri) = 0,

(d) E(τirirT
i ) = �i , (e) E(τ 2

i rirT
i ) = ni K+ν

ni K+ν+2 �i .

Proof. The detailed proof is given in the Appendix.

Using the score function for β from (16), we obtain the maximum likelihood estimate (MLE) for β , which is given by:

β̂ =
(

N∑
i=1

τi X T
i �̂−1

i Xi

)−1( N∑
i=1

τi X T
i �̂−1

i yi

)
,

where �̂i = �i(α̂, ̂λ, ̂δ).
Since the solutions of the score functions for α, λ, and δ are not available, a numerical method must be used. Once the 

information matrix is computed, the iterative Fisher-scoring algorithm can be used to compute the MLE of the parameters. 
To this end, the working estimates (α̂, ̂λ, ̂δ) are updated on the oth iteration as follows:
7
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⎛
⎜⎜⎝

α(o+1)

λ(o+1)

δ(o+1)

ν(o+1)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

α(o)

λ(o)

δ(o)

ν(o)

⎞
⎟⎟⎠+

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎝

I(α) I(α,λ) I(α, δ) I(α,ν)

I(α,λ)T I(λ) I(λ, δ) I(λ, ν)

I(α, δ)T I(λ, δ)T I(δ) I(δ, ν)

I(α,ν)T I(λ, ν)T I(δ, ν)T I(ν)

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎝

∂ log L(θ;y)
∂α

∂ log L(θ;y)
∂λ

∂ log L(θ;y)
∂δ

∂ log L(θ;y)
∂ν

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

(α,λ,δ,ν)=(α(o),λ(o),δ(o),ν(o))

.

This procedure is iterated until convergence.

5. Simulation study

The main purpose of the simulation study is to investigate the performance and robustness of the proposed models 
through inference on the marginal mean regression coefficients. We considered two scenarios in the simulations: The first 
simulation study was conducted to verify the performance of the estimation for the parameters in the proposed model. The 
second simulation study was conducted to examine the robustness of the proposed models compared to the multivariate 
linear model based on the assumption of normality.

5.1. Performance of the proposed model

The parameter estimation performance of the proposed model was verified using various sample sizes and degrees of 
freedom.

We designed 500 random multivariate longitudinal data sets from a t-distribution. The simulation studies were con-
ducted under proposed models (5)-(8) with two covariates: group and time. For the sake of convenience, the true parameter 
values are chosen to be the same as those of the multivariate linear models in Lee et al. (2020). For k = 1, 2, 3 and 
t = 1, . . . , ni = 10,

yitk = xT
itβk +

t−1∑
j=1

K∑
g=1

φit j,kg(yijg − xT
i jβg) + eitk,

xT
itβk = βk0 + βk1Groupi + βk2T imeij + βk3Groupi × T imeit,

φit j,kg = αlm0 I|t− j|=1,

logσitk = λk0,

log

(
ωilm

π − ωilm

)
= δl + δm,

where T imeit ∼ N(0, 1) and Groupi equals 0 or 1 with each group having approximately the same sample size. The true 
parameters in the simulations are as follows:

β1 = (0.3,−0.1,0.2,0.3)T , β2 = (0.2,−0.1,0.2,0.3)T , β3 = (0.2,−0.2,0.2,0.4)T ,

(α110,α120, . . . ,α330) = (0.3,0.4,0.1,0.1,0.3,0.1,0.1,0.3,0.2),

(λ10, λ20, λ30) = (0.1,0.2,0.2), (δ1, δ2, δ3) = (−0.5,−0.4,−0.3).

To demonstrate the consistency of the proposed model, each table presents the percent relative bias (PRB), coverage 
probability (CP), mean of standard errors (SE), standard deviation of 500 estimates (SD), mean of estimated mean parameters 
(Mean) and degrees of freedom. We also present Frobenius norms (Frob) of estimated scale matrices, which involve squaring 
the difference between aspects of the estimator and the target. We conducted simulations with sample sizes of 100, 300, 
and 500 as well as various degrees of freedom (ν = 3, 5, 7).

Means, PRBs, SEs, SDs, CPs, and Frob for degrees of freedom 3, 5, and 7 are respectively listed in Tables 1, 2, and 3. 
As the sample size increases, PRBs, SEs, SDs, and Frob all decrease. |P R B| at the bottom of the table indicates the sum of 
the absolute PRB values of all estimates of β . A higher value of |P R B| indicates a more biased and inaccurate estimation. 
Further, as shown in all the tables, SEs and SDs are approximately the same for all estimated parameters, thus demonstrating 
that the calculation of SEs using the Fisher information matrix works well.

5.2. Evaluation of robustness

Two simulations were conducted to compare the robustness of the proposed models and multivariate linear models 
(MLMs) with varying numbers and degree of outliers. Note that MLMs assume the multivariate normal distribution which 
is more vulnerable to outliers than the t-distribution. We generated 500 multivariate longitudinal data sets from the multi-
variate normal distribution with the data sets contaminated by a spot of outliers. To evaluate the robustness, the estimated 
mean, PRB, CP, SE, SD, and |P R B| are presented in each table.
8
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Table 1
Simulation results for parameter estimates of MTLM. 500 data sets were generated from a t distribution with degree of freedom 3. The average regression 
coefficient estimate (Mean), percent relative bias (PRB), average standard error (SE) and standard deviation (SD) of 500 estimates, as well as coverage 
probability (CP), total absolute value of PRB (|P R B|), and Frobenius norm (Frob) are displayed.

Parameter (True) N=100 N=300 N=500

Mean PRB Mean PRB Mean PRB
SE (SD) CP(%) SE (SD) CP(%) SE (SD) CP(%)

β10 0.311 3.52 0.309 3.01 0.304 1.41
(0.3) 0.157 (0.162) 93.6 0.090 (0.091) 94.2 0.070 (0.076) 90.8
β11 -0.115 15.35 -0.109 9.29 -0.101 0.82
(-0.1) 0.222 (0.220) 95.0 0.128 (0.134) 94.0 0.099 (0.107) 91.8
β12 0.192 -3.86 0.198 -1.24 0.199 -0.39
(0.2) 0.067 (0.070) 94.0 0.038 (0.039) 94.0 0.028 (0.028) 94.6
β13 0.311 3.72 0.302 0.78 0.299 -0.49
(0.3) 0.092 (0.099) 93.6 0.053 (0.055) 93.6 0.040 (0.042) 94.8

β20 0.209 4.56 0.204 2.06 0.202 1.02
(0.2) 0.131 (0.139) 93.4 0.075 (0.073) 96.0 0.059 (0.060) 94.0
β21 -0.109 9.25 -0.104 4.18 -0.100 0.16
(-0.1) 0.185 (0.184) 95.4 0.107 (0.109) 94.4 0.083 (0.087) 92.6
β22 0.196 -2.21 0.199 -0.40 0.197 -1.70
(0.2) 0.070 (0.071) 93.8 0.041 (0.044) 91.0 0.030 (0.031) 93.8
β23 0.307 2.20 0.300 0.13 0.303 1.10
(0.3) 0.096 (0.100) 93.6 0.056 (0.060) 94.2 0.043 (0.045) 94.2

β30 0.203 6.53 0.203 1.46 0.203 1.66
(0.2) 0.140 (0.144) 93.8 0.081 (0.080) 95.4 0.062 (0.065) 93.8
β31 -0.215 7.49 -0.203 1.28 -0.204 1.88
(-0.2) 0.197 (0.189) 95.4 0.114 (0.117) 93.8 0.088 (0.093) 93.2
β32 0.198 -1.00 0.202 1.06 0.198 -1.14
(0.2) 0.074 (0.072) 95.0 0.043 (0.045) 94.8 0.032 (0.033) 94.2
β33 0.406 1.44 0.399 -0.22 0.401 0.14
(0.4) 0.102 (0.102) 95.0 0.060 (0.064) 93.6 0.046 (0.047) 94.0

ν 3.046 1.54 3.028 0.924 3.009 0.40
(3) 0.458 (0.480) 94.6 0.262 (0.267) 94.6 0.201 (0.201) 95.4

|P R B| 61.14 25.11 11.91

Frob 0.075 0.019 0.016

5.2.1. Study 1
Outliers were provided for all response values at random time points (see Table 4). The simulation data sets respectively 

included 1% values of responses contaminated by outliers in simulations of sample sizes 100 and 500, and the outliers were 
three times the remaining values. The results indicate that even a single outlier (in a sample size of 100) can seriously affect 
the mean parameter estimates, since all mean parameter estimates in MLM are biased with higher absolute PRB values. For 
all sample sizes, the total absolute PRBs in MTLM were approximately half of those in MLM. In addition, when the sample 
size was 500, the results show total absolute PRBs similar to the results listed in Tables 1, 2, and 3. These findings indicate 
that our proposed estimation is robust to the outliers.

5.2.2. Study 2
We considered that 5% values of specific response variables (yit3) were contaminated by outliers at random time points. 

That is, we provided outliers for yit3 by adding covariates by the maximum values of the covariates. As presented in Table 5, 
the sums of absolute PRBs are much larger in MLM than they are in MTLM. Specifically, β30, β31, β32, and β33 were severely 
affected by outliers in MLM. On the other hand, the results in MTLM show reduced biases regardless of the existence of 
outliers. For all sample sizes, the total absolute biases of the estimates were not much different from those without outliers, 
as presented in the tables (Table 1, 2, 3). Thus, when the data sets had outliers, the estimation using MTLM was robust to 
the outliers in all cases.

6. Analysis of NAFLD data

In this section, we described the application of our proposed models to data collected from a nonalcoholic fatty liver 
disease (NAFLD) study which aimed to determine the effect of NAFLD on lung function in the general Korean population 
from October 2003 to December 2016 (Lee et al., 2018). In addition to lung function (forced vital capacity (FVC) and 
forced expiratory volume in 1 second (FEV1)), Lee et al. (2020) included body mass index (BMI) as a response variable and 
analyzed the multivariate longitudinal outcomes using multivariate linear models with a multivariate normal distribution. 
We analyze these three responses (FVC, FEV1, and BMI) while including five explanatory variables from the NAFLD data: 
group (denoted by Arm, Arm=1 for NAFLD; =0 for non-NAFLD), Sex (male=1; female=0), Age, metabolic syndrome (denoted 
9
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Table 2
Simulation results for parameter estimates of MTLM. 500 data sets were generated from a tdistribution with degree of freedom 5. The average regression 
coefficient estimate (Mean), percent relative bias (PRB), average standard error (SE) and standard deviation (SD) of 500 estimates, as well as coverage 
probability (CP), total absolute value of PRB (|P R B|), and Frobenius norm (Frob) are displayed.

Parameter (True) N=100 N=300 N=500

Mean PRB Mean PRB Mean PRB
SE (SD) CP(%) SE (SD) CP(%) SE (SD) CP(%)

β10 0.304 1.34 0.302 0.59 0.302 0.77
(0.3) 0.131 (0.133) 95.4 0.076 (0.081) 91.4 0.059 (0.061) 93.6
β11 -0.090 -9.75 -0.098 -1.74 -0.102 1.59
(-0.1) 0.185 (0.183) 95.6 0.107 (0.111) 95.4 0.083 (0.092) 91.6
β12 0.200 0.17 0.199 -0.31 0.199 -0.40
(0.2) 0.056 (0.057) 93.8 0.032 (0.034) 93.4 0.023 (0.023) 95.6
β13 0.302 0.56 0.300 0.02 0.300 0.14
(0.3) 0.077 (0.078) 95.4 0.045 (0.044) 94.8 0.033 (0.034) 95.0

β20 0.205 2.40 0.199 -0.71 0.200 0.14
(0.2) 0.109 (0.110) 95.2 0.063 (0.064) 94.4 0.049 (0.050) 95.0
β21 -0.094 -5.55 -0.096. -3.74 -0.100 -0.03
(-0.1) 0.154 (0.148) 96.8 0.089 (0.090) 94.6 0.069 (0.075) 94.6
β22 0.203 1.48 0.200 0.02 0.198 -0.30
(0.2) 0.058 (0.062) 93.2 0.034 (0.035) 94.4 0.025 (0.025) 93.2
β23 0.297 -0.87 0.300 -0.11 0.304 -0.87
(0.3) 0.080 (0.085) 91.6 0.047 (0.046) 95.6 0.035 (0.035) 94.2

β30 0.204 1.97 0.200 0.14 0.201 1.47
(0.2) 0.117 (0.119) 94.6 0.067 (0.069) 94.2 0.052 (0.053) 94.4
β31 -0.193 -3.51 -0.196 -1.79 -0.200 0.47
(-0.2) 0.165 (0.162) 95.0 0.095 (0.100) 94.8 0.074 (0.079) 95.4
β32 0.203 1.53 0.201 0.68 0.200 0.19
(0.2) 0.062 (0.065) 95.0 0.036 (0.037) 93.2 0.026 (0.025) 93.6
β33 0.402 0.45 0.400 -0.11 0.402 0.08
(0.4) 0.085 (0.089) 93.2 0.050 (0.051) 94.4 0.037 (0.038) 94.8

ν 5.160 3.208 5.048 0.96 5.020 0.40
(5) 0.896 (1.107) 94.0 0.499 (0.516) 95.4 0.383 (0.393) 93.8

|P R B| 29.59 9.98 6.86

Frob 0.058 0.033 0.026

by Meta, Meta=1 for metabolic syndrome; =0 for non-metabolic syndrome), and follow-up duration (Duration). Age and 
Duration were respectively rescaled as log(age) and (duration − mean(duration))/100.

6.1. Data description

We first considered the outcomes of the first 10 visits in the NAFLD data (Lee et al., 2020) and we assumed that data 
were missing at random (MAR). Fig. 1 shows the trend of each mean response variable of the subjects for the first 10 visits. 
In FVC and FEV1, the mean differences between the two arms were small, and as the number of visits increased, the means 
of FVC and FEV1 decreased linearly. However, the means of BMI had a non-linear trend with visits, and the mean difference 
between the two arms was significantly different.

Table 6 presents a brief description of the explanatory variables including the proportion, mean, and standard deviation 
of each group. These were almost equal proportions of subjects in non-NAFLD and NAFLD. However, the proportion of males 
was higher than that of females, and the proportion of subjects without any metabolic syndrome was much higher than 
that of subjects with metabolic syndrome.

Table 7 presents the outcomes of two sample t tests with the categorical explanatory variables used in the analysis. 
Except for the p-value of Arm for FVC, all variables were significant under the significance level of 0.05. Thus, there were 
differences in all responses depending on sex and the presence of metabolic syndromes. There were also differences in FEV1 
and BMI depending on Arm (NAFLD and non-NAFLD groups). Table 8 lists the correlations of the response variables. FVC 
and FEV1 show a particularly strong positive correlation (0.955).

We first fit the NAFLD data using a typical MLM, as described in Lee et al. (2020). Using the standardized residuals from 
the model, we conducted diagnostics to check the adequacy of the MLM. Figs. 2, 3, and 4 show boxplots of the standardized 
residuals against Arm, Sex, and Meta. These plots show that the residuals varied depending on the level of each predictor 
variable. There are also a number of outliers. These results show that a heavy-tailed distribution is needed and that the 
covariance matrix must have a structure that varies with the predictor variables. To elaborate, there are extreme outliers for 
which the absolute value of the residuals is over 6 in FVC and FEV1 when considering the female group, arm group, and 
metabolic syndrome group. As indicated in the previous simulation results (Study 1), MLMs have proved vulnerable to few 
10



Table 3
Simulation results for parameter estimates of MTLM. 500 data sets were generated from a tdistribution with degree of freedom 7. The average regression 
coefficient estimate (Mean), percent relative bias (PRB), average standard error (SE) and standard deviation (SD) of 500 estimates, as well as coverage 
probability (CP), total absolute value of PRB (|P R B|), and Frobenius norm (Frob) are displayed.

Parameter (True) N=100 N=300 N=500

Mean PRB Mean PRB Mean PRB
SE (SD) CP(%) SE (SD) CP(%) SE (SD) CP(%)

β10 0.299 -0.08 0.304 -0.01 0.299 -0.40
(0.3) 0.131 (0.134) 94.8 0.076 (0.082) 96.2 0.059 (0.059) 95.4
β11 -0.108 7.70 -0.106 1.52 -0.098 -1.53
(-0.1) 0.186 (0.188) 93.4 0.107 (0.107) 96.4 0.084 (0.081) 95.4
β12 0.204 2.00 0.204 0.54 0.201 0.31
(0.2) 0.065 (0.067) 94.8 0.039 (0.039) 93.8 0.029 (0.027) 95.8
β13 0.293 -2.50 0.294 -0.82 0.300 -0.03
(0.3) 0.094 (0.094) 94.4 0.053 (0.050) 94.2 0.040 (0.038) 95.0

β20 0.200 0.07 0.201 -0.88 0.200 -0.05
(0.2) 0.113 (0.115) 94.2 0.066 (0.068) 95.0 0.051 (0.052) 94.8
β21 -0.109 9.25 -0.104 -0.60 -0.099 -1.33
(-0.1) 0.161 (0.162) 95.2 0.093 (0.092) 95.6 0.072 (0.072) 95.8
β22 0.203 1.26 0.205 -1.13 0.200 -0.07
(0.2) 0.070 (0.073) 95.0 0.041 (0.044) 94.0 0.031 (0.030) 96.0
β23 0.297 -0.95 0.295 0.55 0.301 0.26
(0.3) 0.100 (0.105) 93.6 0.057 (0.056) 93.4 0.043 (0.043) 95.4

β30 0.206 3.00 0.202 0.18 0.199 -0.06
(0.2) 0.121 (0.126) 93.6 0.070 (0.073) 94.4 0.055 (0.055) 95.0
β31 -0.219 9.38 -0.203 -1.05 -0.200 -0.62
(-0.2) 0.171 (0.177) 93.2 0.100 (0.098) 96.2 0.077 (0.074) 95.8
β32 0.204 1.99 0.203 -0.82 0.200 0.02
(0.2) 0.074 (0.076) 95.2 0.043 (0.046) 94.4 0.032 (0.032) 95.4
β33 0.394 -1.57 0.396 0.16 0.399 -0.12
(0.4) 0.105 (0.110) 94.4 0.060 (0.058) 95.6 0.046 (0.045) 96.0

|P R B| 39.75 8.26 4.80

ν 7.431 6.16 7.098 1.40 7.072 1.03
(7) 1.460 (1.512) 97.2 0.785 (0.798) 94.8 0.604 (0.604) 94.8

Frob 0.060 0.019 0.019

extreme outliers. The existence of extreme outliers implies that MLMs are not appropriate for fitting NAFLD data. Therefore, 
these boxplots indicate that more robust models are needed, as there are a number of outliers.

6.2. Model fit

The analysis of the NAFLD study in Lee et al. (2020) suggested an AR(4) covariance matrix with ISDs depending on Arm, 
Sex, and Meta in MLMs. Fig. 2 also shows the dependence of the predictor variables. We therefore considered the structure 
of this covariance matrix.

For further analysis, we considered five MTLMs with various covariance matrices depending on Arm, Sex, and Meta 
(see Table 9). Models 1 - 5 respectively correspond to heteroscedastic AR(1), AR(2), AR(3), AR(4), and AR(5) covariance 
matrices with ISDs depending on (Arm, Sex, and Meta). We also considered a multivariate normal linear model with an 
AR(4) covariance matrix depending on Arm, Sex, and Meta (Model 0).

To reduce the number of iterations until convergence, we used the MLE estimated from the model in (Lee et al., 2020) 
as initial values. The convergence criterion was 

∑
l |θ̂old − θ̂new | ≤ 10−5 where θ̂old and θ̂new are the previous and current 

fitted values of the parameters, respectively.
Table 10 provides the maximized log-likelihoods and Akaike information criterion (AIC). We first conducted likelihood 

ratio tests (LRTs) to compare nested models (Model 1 versus Model 2 (χ2 = 2487.30, p < 0.0001); Model 2 versus Model 3 
(χ2 = 290.24, p < 0.0001); Model 3 versus Model 4 (χ2 = 41.98, p < 0.0001); and Model 4 versus Model 5 (χ2 = 14.78, 
p = 0.0972)). The results showed Model 4 was better than the other models. Since Models 0 and 4 were not nested, we 
compared Models 4 and 0 using AICs; this comparison indicated that Model 4 also outperformed Model 0 (AIC= 51281.60
for Model 0; 46099.92 for Model 4).

Table 11 presents the maximum likelihood estimates of the mean parameters for Models 0, 3, 4, and 5. The estimated 
degrees of freedom were similar (8.773, 8.763, and 8.763 for Models 3, 4, and 5, respectively). The MLEs of the mean 
parameters for the four models were similar due to the orthogonality of the mean and the other parameters. Since Model 4 
showed the best performance among the models considered, we focus on the estimated mean parameters in that model.
A. Rhee, M.-S. Kwak and K. Lee Computational Statistics and Data Analysis 170 (2022) 107439
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Table 4
Simulation results of multivariate linear model (MLM) and multivariate t linear model (MTLM) with outliers. 500 data sets from normal distribution were 
generated and 1% outliers of the data with all responses at random time points were put into the dataset.

Parameter (True) N=100 N=500

MLM MTLM MLM MTLM
Mean PRB Mean PRB Mean PRB Mean PRB
SE (SD) CP(%) SE (SD) CP(%) SE (SD) CP(%) SE (SD) CP(%)

β10 0.312 4.01 0.305 1.67 0.311 3.82 0.302 0.52
(0.3) 0.110 (0.112) 94.4 0.106 (0.107) 94.2 0.049 (0.050) 94.8 0.048 (0.049) 94.4
β11 -0.114 13.82 -0.106 6.43 -0.105 4.59 -0.095 -5.50
(-0.1) 0.155 (0.158) 93.8 0.150 (0.156) 93.4 0.070 (0.070) 94.8 0.067 (0.070) 94.2
β12 0.209 4.45 0.203 1.42 0.206 2.77 0.200 0.10
(0.2) 0.044 (0.044) 93.0 0.042 (0.046) 93.0 0.020 (0.020) 93.2 0.019 (0.020) 94.0
β13 0.289 -3.57 0.299 -0.18 0.304 1.25 0.300 0.08
(0.3) 0.063 (0.064) 94.4 0.059 (0.062) 93.6 0.029 (0.029) 94.8 0.027 (0.029) 92.2

β20 0.209 4.71 0.207 3.33 0.209 4.54 0.201 0.45
(0.2) 0.091 (0.095) 95.0 0.089 (0.091) 94.4 0.041 (0.041) 94.4 0.040 (0.041) 93.8
β21 -0.108 8.80 -0.107 7.21 -0.105 4.63 -0.095 -5.49
(-0.1) 0.129 (0.131) 94.8 0.125 (0.131) 94.0 0.058 (0.057) 96.6 0.056 (0.057) 94.0
β22 0.206 3.10 0.201 0.73 0.206 3.04 0.201 0.38
(0.2) 0.047 (0.048) 95.0 0.045 (0.046) 94.2 0.021 (0.022) 93.2 0.020 (0.021) 92.6
β23 0.296 -1.35 0.298 -0.55 0.303 0.92 0.299 0.22
(0.3) 0.067 (0.069) 94.0 0.064 (0.064) 94.8 0.030 (0.030) 95.6 0.028 (0.030) 94.0

β30 0.209 4.48 0.206 3.19 0.210 4.91 0.201 0.59
(0.2) 0.098 (0.102) 94.0 0.094 (0.097) 93.8 0.044 (0.046) 93.4 0.042 (0.044) 93.8
β31 -0.209 4.52 -0.209 4.35 -0.207 3.36 -0.192 -3.77
(-0.2) 0.138 (0.139) 94.6 0.134 (0.138) 95.0 0.062 (0.063) 94.8 0.060 (0.063) 93.6
β32 0.206 3.20 0.201 0.70 0.206 3.18 0.201 0.74
(0.2) 0.049 (0.049) 94.6 0.048 (0.049) 94.4 0.022 (0.022) 93.6 0.021 (0.021) 94.2
β33 0.392 -1.86 0.394 -1.58 0.404 1.02 0.400 -0.08
(0.4) 0.071 (0.073) 94.0 0.067 (0.069) 94.0 0.032 (0.031) 95.6 0.030 (0.030) 95.8

|P R B| 57.87 31.34 38.03 17.92

Table 5
Simulation results of multivariate linear model (MLM) and multivariate t linear model (MTLM) with outliers. 500 data sets from multivariate normal 
distribution were generated and 5% outliers of the data with specific responses at random time points were put into the dataset.

Parameter (True) N=100 N=500

MLM MTLM MLM MTLM
Mean PRB Mean PRB Mean PRB Mean PRB
SE (SD) CP(%) SE (SD) CP(%) SE (SD) CP(%) SE (SD) CP(%)

β10 0.308 2.81 0.299 -0.22 0.313 4.33 0.301 0.18
(0.3) 0.106 (0.108) 94.2 0.105 (0.110) 92.0 0.048 (0.048) 93.6 0.047 (0.050) 93.6
β11 -0.102 2.44 -0.095 -4.85 -0.104 3.98 -0.095 -5.44
(-0.1) 0.149 (0.156) 93.0 0.149 (0.158) 93.2 0.067 (0.067) 95.2 0.067 (0.072) 94.2
β12 0.197 -1.27 0.197 -1.28 0.203 1.35 0.200 -0.03
(0.2) 0.043 (0.043) 94.6 0.041 (0.042) 93.0 0.019 (0.020) 93.8 0.018 (0.020) 92.8
β13 0.305 1.75 0.300 0.01 0.298 -0.65 0.300 -0.16
(0.3) 0.062 (0.063) 94.0 0.060 (0.064) 93.4 0.027 (0.028) 95.8 0.027 (0.030) 90.8

β20 0.206 2.83 0.198 -1.22 0.212 6.15 0.200 0.09
(0.2) 0.088 (0.090) 94.2 0.088 (0.092) 94.2 0.040 (0.040) 93.4 0.039 (0.042) 92.2
β21 -0.100 -0.03 -0.093 -7.12 -0.104 3.54 -0.094 -5.85
(-0.1) 0.125 (0.128) 94.6 0.124 (0.131) 92.6 0.056 (0.056) 95.4 0.056 (0.059) 92.8
β22 0.199 -0.55 0.199 -0.61 0.203 1.58 0.200 0.20
(0.2) 0.046 (0.048) 94.0 0.043 (0.047) 93.2 0.020 (0.019) 96.2 0.020 (0.022) 91.4
β23 0.305 1.51 0.301 0.35 0.297 -1.11 0.299 -0.44
(0.3) 0.066 (0.069) 93.8 0.064 (0.071) 92.0 0.029 (0.028) 96.8 0.028 (0.031) 92.8

β30 0.362 81.17 0.201 0.74 0.349 74.47 0.201 0.27
(0.2) 0.102 (0.090) 65.6 0.096 (0.098) 93.4 0.046 (0.044) 9.2 0.043 (0.046) 95.0
β31 -0.248 23.75 -0.196 -1.80 -0.215 7.26 -0.192 -4.00
(-0.2) 0.145 (0.131) 96.6 0.136 (0.141) 94.6 0.065 (0.061) 95.4 0.061 (0.065) 93.6
β32 0.203 1.60 0.198 -0.78 0.170 -14.68 0.201 0.45
(0.2) 0.063 (0.050) 98.2 0.049 (0.048) 94.2 0.028 (0.021) 88.0 0.022 (0.022) 95.8
β33 0.357 -10.78 0.400 0.04 0.443 10.70 0.399 -0.20
(0.4) 0.091 (0.072) 96.8 0.072 (0.071) 96.0 0.040 (0.029) 88.6 0.032 (0.031) 96.0

|P R B| 130.49 19.02 129.80 17.31
12



Fig. 1. Plots of mean FVC, mean FEV1, and mean BMI of subjects over visit for two arms (NAFLD (solid line) and non-NAFLD (dashed line)).

Table 6
Description of explanatory variables (Arm=0 for non-NAFLD, Arm=1 for NAFLD, 
Sex=0 for female, Sex=1 for male, Meta =0 for non-metabolic syndrome, Meta=1 for 
metabolic syndrome).

Variable Proportion (count)/ Mean SD
Arm 0 0.49 (12980) −

1 0.51 (13555) −
Sex 0 0.36 (9519) −

1 0.64 (17016) −
Meta 0 0.83 (22142) −

1 0.17 (4393) −
Duration 42.30 33.32

Age 53.12 9.10

The fitted models using Model 4 were given by the following equations:

ˆF V C it = 8.283∗ − 0.018∗ Armi + 0.007Durationit − 1.352∗ Ageit + 1.205∗ Sexi − 0.008Metait,

ˆF E V 1it = 8.096∗ − 0.011∗ Armi + 0.004Durationit − 1.438∗ Ageit + 0.906∗ Sexi − 0.010∗Metait,

ˆBM Iit = 24.267∗ + 0.306∗ Armi − 0.220∗Durationit − 0.224∗ Ageit + 0.845∗Sexi + 0.431∗Metait,

where ∗ indicates significance with 95% confidence level.
A. Rhee, M.-S. Kwak and K. Lee Computational Statistics and Data Analysis 170 (2022) 107439
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Table 7
Two sample t-test with Arm, Sex, Meta (Arm=0 for non-NAFLD, Arm=1 for NAFLD, 
Sex=0 for female, Sex=1 for male, Meta =0 for non-metabolic syndrome, Meta=1 for 
metabolic syndrome).

Explanatory Responses Test statistics (P-value)
Variables
Arm FVC 0.125

FEV1 0.017
BMI < 0.01

Sex FVC < 0.01
FEV1 < 0.01
BMI < 0.01

Meta FVC < 0.01
FEV1 < 0.01
BMI < 0.01

Table 8
Correlation of response variables.

FVC FEV1 BMI
FVC 1 0.955 0.173
FEV1 0.955 1 0.172
BMI 0.173 0.172 1

Table 9
Models for φit j,lm , lit j,lm and logσit in the NAFLD data. Ai is Armi ; Si is Sexi ; Mi is Metai .

Model Distribution GARP ISD
Model 0 Normal φit j,lm =∑3

g=0 αlmg I(|t− j|=g+1) logσitk = λk0 + λk1Ai + λk2Si + λk3Mit

Model 1 t φit j,lm = αlm0 I(|t− j|=1) logσitk = λk0 + λk1Ai + λk2Si + λk3Mit

Model 2 t φit j,lm =∑1
g=0 αlmg I(|t− j|=g+1) logσitk = λk0 + λk1Ai + λk2Si + λk3Mit

Model 3 t φit j,lm =∑2
g=0 αlmg I(|t− j|=g+1) logσitk = λk0 + λk1Ai + λk2Si + λk3Mit

Model 4 t φit j,lm =∑3
g=0 αlmg I(|t− j|=g+1) logσitk = λk0 + λk1Ai + λk2Si + λk3Mit

Model 5 t φit j,lm =∑4
g=0 αlmg I(|t− j|=g+1) logσitk = λk0 + λk1Ai + λk2Si + λk3Mit

Table 10
Maximized log likelihoods and AICs for models.

Model 0 1 2 3 4 5
Max. loglik. -25571.80 -24389.72 -23146.07 -23000.95 -22979.96 -22972.57
AIC 51281.60 48951.44 46396.14 46123.90 46099.92 46103.14

Table 11
Maximum likelihood estimates of the mean parameters (β) for Models 0, 3, 4 and 5. ∗ indicates significance with 95% confidence level.

Model 0 Model 3 Model 4 Model 5
Response 1: FVC
Int. 8.435∗ (0.088) 8.282∗ (0.082) 8.283∗ (0.082) 8.284∗ (0.082)
Arm −0.018∗ (0.004) −0.018∗ (0.004) −0.018∗ (0.004) −0.018∗ (0.004)
Duration 0.019∗ (0.009) 0.007 (0.008) 0.007 (0.008) 0.008∗ (0.008)
Age −1.385∗ (0.022) −1.352∗ (0.021) −1.352∗ (0.021) −1.352∗ (0.021)
Sex 1.226∗ (0.008) 1.205∗ (0.007) 1.205∗ (0.007) 1.205∗ (0.007)
Meta −0.008 (0.005) −0.008∗ (0.004) −0.008∗ (0.004) −0.008∗ (0.004)

Response 2: FEV1
Int. 8.253∗ (0.071) 8.093∗ (0.067) 8.096∗ (0.067) 8.097∗ (0.067)
Arm −0.013∗ (0.003) −0.011∗ (0.003) −0.011∗ (0.003) −0.011∗ (0.003)
Duration 0.012 (0.007) 0.004 (0.007) 0.004 (0.007) 0.004 (0.007)
Age −1.474∗ (0.018) −1.438∗ (0.017) −1.438∗ (0.017) −1.439∗ (0.017)
Sex 0.917∗ (0.006) 0.905 (0.006) 0.906∗ (0.006) 0.906∗ (0.006)
Meta −0.010∗ (0.004) −0.010∗ (0.003) −0.010∗ (0.003) −0.010∗ (0.003)

Response 3: BMI
Int. 24.745∗ (0.356) 24.266∗ (0.328) 24.267∗ (0.328) 24.266∗ (0.328)
Arm 0.325∗ (0.016) 0.306∗ (0.015) 0.306∗ (0.015) 0.306∗ (0.015)
Duration −0.202∗ (0.039) −0.221∗ (0.035) −0.220∗ (0.035) −0.220∗ (0.035)
Age −0.317∗ (0.089) −0.224∗ (0.082) −0.224∗ (0.082) −0.225∗ (0.082)
Sex 0.775∗ (0.035) 0.845∗ (0.033) 0.845∗ (0.033) 0.846∗ (0.033)
Meta 0.475∗ (0.019) 0.431∗ (0.017) 0.431∗ (0.017) 0.431∗ (0.017)

Max. loglik. −25571.80 −23000.95 −22979.96 −22972.57
AIC 51281.60 46123.90 46099.92 46103.14
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Fig. 2. The boxplots of standardized residuals for each response (FVC, FEV1, and BMI) against Sex.

In the response FVC, all coefficients of covariates except for Duration were significant. It can be seen that the estimated 
mean of FVC was lower for NAFLD than for non-NAFLD, and as the subject’s age increased, the estimated mean of FVC 
decreased. It was also higher for males than for females. Lastly, estimated mean of FVC was lower for subjects without any 
metabolic syndromes than it was for those with a metabolic syndrome.

In the response FEV1, all coefficients of covariates except Duration were significant. This indicates that the estimated 
mean of FEV1 was lower for NAFLD than for non-NAFLD, and that as the subject’s age increased, the estimated mean of 
FEV1 decreased. The estimated mean of FEV1 was higher for males than females while it was lower for subjects who had a 
metabolic syndrome than it was for those who did not have any metabolic syndromes.

In the response BMI, all coefficients of covariates were significant. This indicates that the estimated mean of BMI for 
NAFLD was higher than that for non-NAFLD, and that it decreased as the follow-up duration increased. Further, as the 
subject’s age increased, the estimated mean of BMI decreased, and it was higher for males than females. The estimated 
mean of BMI was lower for subjects without any metabolic syndromes than it was for those with a metabolic syndrome.

Note that, in the above, each subject’s age is the logarithm of the age and follow-up duration was also rescaled.
Table 12 presents the estimates of GARPs, αkg . The results indicate that in the first-, second-, and third-order, all re-

sponses were correlated with their own. In the fourth-order, only FEV1 was correlated with the same response. Overall, two 
lung functions (FVC and FEV1) were correlated, and when BMI was given in the first and second order, all responses were 
dependent.
A. Rhee, M.-S. Kwak and K. Lee Computational Statistics and Data Analysis 170 (2022) 107439
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Fig. 3. The boxplots of standardized residuals for each response (FVC, FEV1, and BMI) against Arm.

Table 12
Maximum likelihood estimates of αkg for Model 4. ∗ indicates significance with 95% 
confidence level.

αkg Estimate
I{|t− j|=1} 0.604∗ 0.208∗ 0.008∗
αkg1 0.047∗ 0.716∗ 0.008∗

0.004 0.070 0.833∗

I{|t− j|=2} 0.242∗ −0.109∗ −0.005∗
αkg2 0.005∗ 0.135∗ −0.003∗

0.021 −0.051 0.119∗

I{|t− j|=3} 0.079∗ −0.069∗ −0.002
αkg3 −0.025 0.060∗ −0.001

−0.010 −0.037 0.031∗

I{|t− j|=4} 0.020 0.010 −0.001
αkg4 −0.025 0.056∗ −0.003

−0.054 0.097 0.005
16
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Fig. 4. The boxplots of standardized residuals for each response (FVC, FEV1, and BMI) against Meta.

The estimated ISDs were given by:

log σ̂it1 = −1.593∗ − 0.026∗ Armi + 0.347∗ Sexi − 0.036∗Metait,

log σ̂it2 = −1.790∗ − 0.021∗ Armi + 0.333∗ Sexi − 0.050∗Metait,

log σ̂it3 = 0.106∗ − 0.034∗ Armi − 0.162∗Sexi − 0.019Metait,

where ∗ indicates significance with 95% confidence level.
All the estimated log(ISD) (log σ̂it1) for FVC, FEV1, and BMI were significant. This indicates that the estimated predic-

tion SD differed depending on Arm, Sex, and Meta. This means that the estimated covariance matrix was heteroscedastic 
depending on the subject’s treatment arm, gender, and the presence of metabolic syndrome.

The estimated correlation matrix between responses was given by:

R̂ i =
⎛
⎝ 1.000 0.833 −0.052

0.833 1.000 −0.053
−0.052 −0.053 1.000

⎞
⎠ .

Thus, the estimated correlations of FVC versus FEV1, FVC versus BMI, and FEV1 versus BMI were 0.833, -0.052, and -0.053, 
respectively.
17
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7. Conclusion

In this paper, we proposed multivariate t linear models (MTLMs) for multivariate longitudinal data for which the nor-
mal assumption was not guaranteed. Unlike the prior literature using Kronecker product structured covariance matrix, we 
employed a flexible structured covariance matrix using modified Cholesky decomposition (MCD). The covariance matrix in 
MTLMs was decomposed into the generalized autoregressive parameter matrix (GARPM), correlation matrix, and diagonal 
matrix with innovation standard deviations (ISDs) using the MCD and hypersphere decompositions (HD) to explains three 
correlations: the correlation within separate responses over time, the correlation between different responses at the same 
time point, and the cross-correlation between different responses at different times. Using the two decompositions, we 
decompose the covariance matrix into unconstrained parameters, which this ensures that the covariance matrix is positive-
definite and can be heteroscedastic with fewer parameters.

Through the simulation studies, we showed that the algorithm of MTLM works well, and that MTLM is robust when 
outliers exist and the data exhibit heavy tails. As a result, we conclude that the proposed MTLM is a promising model for 
multivariate longitudinal data.

The performance of the MTLM was obtained through an analysis of the NAFLD study, and we compared several models 
with different covariance matrices to identify the best model for NAFLD study. There were significant differences in each 
of FEV1, FVC, and BMI between the two arms. Controlling the other covariates (sex, age, duration, and meta), NAFLD had 
negative effects on FEV1 and FVC along with positive effects on BMI, respectively.

We can extend MTLMs to multivariate t linear mixed models for multivariate longitudinal data. In the models, the ran-
dom effects and within-subject variations are decomposed and the within-subject variations are also decomposed using the 
MCD and HD. Further, we consider multivariate t linear models with an autoregressive moving-average (ARMA) structured 
scaled matrix to accommodate multivariate longitudinal data with many replications. Instead of using the high-order AR 
structure for the scale matrix, we utilize the ARMA structured scale matrix using autoregressive moving-average Cholesky 
decomposition (ARMACD) (Lee et al., 2021). Finally we also consider the modeling of multivariate longitudinal categorical 
data in multivariate generalized linear mixed models (MGLMMs). In the MGLMMs, the covariance matrix for latent variables 
has the three correlations that are modeled using the MCD and HD. These will continue to be explored in ongoing work.

8. Software

Software in the form of R code is available on request from the corresponding author (keunbaik @skku .edu).
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Appendix A

Detailed calculations on the Fisher information matrix

I(α) = E

(
−∂2 log L(θ; y)

∂α∂αT

)
=
(

Iαl1m1 g1 ,αl2m2 g2

)
,

I(λ) = E

(
−∂2 log L(θ; y)

∂λ∂λT

)
=
(

Iλk1 g1 ,λk2 g2

)
,

I(δ) = E

(
−∂2 log L(θ; y)

∂δ∂δT

)
=
(

Iδg1 ,δg2

)
,

I(α,λ) = E

(
−∂2 log L(θ; y)

∂λ∂αT

)
=
(

Iλk1 g1 ,αl2m2 g2

)
,

I(α, δ) = E

(
−∂2 log L(θ; y)

∂δ∂αT

)
=
(

Iδg1 ,αl2m2 g2

)
,

I(λ, δ) = E

(
−∂2 log L(θ; y)

∂δ∂λT

)
=
(

Iδg1 ,λk2 g2

)
,

where

Iαl1m1 g1 ,αl2m2 g2
=

N∑ ni K + ν

ni K + ν + 2
tr

(
�i

∂T T
i

∂αl1m1 g1

D−1
i

∂Ti

∂αl2m2 g2

)
, (21)
i=1
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Iλk1 g1 ,λk2 g2
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ν + 2
�i

)
dri

= �i .

(e) Proof of E(τ 2
i rirT

i ) = �i :

E(τ 2
i rir

T
i ) =

∫ (
ν + ni K

ν + �i(θ)

)2

rir
T
i f (ri;ν,�i)dri

= (ni K + ν)(ν + 2)

(ni K + ν + 2)ν

∫
rir

T
i f

(
ri;ν + 4,

ν

ν + 4
�i

)
dri

= ν + ni K

ni K + ν + 2
�i .
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